
Computing Project Bernhard Tschirren

Page 1 of 24

Curtin University of Technology
School of Computer Science

Computing Project
Semester 2, 1999

Realtime Walkthroughs of
Massive Architectural Models

Name: Bernhard Tschirren
Student ID: 970623I
Supervisor: Andrew Marriott

Declaration: Except as clearly indicated in the text, this project
is solely my work and has not been submitted for
assessment in any other unit or by any other
student.

Signed:
--------------------------------------------------------------------

Date:
--------------------------------------------------------------------



Computing Project Bernhard Tschirren

Page 2 of 24

CONTENTS

COVER ..................................................................................................................... 1

CONTENTS .............................................................................................................. 2

1 ABSTRACT........................................................................................................ 3

2 INTRODUCTION................................................................................................ 3

3 BACKGROUND ................................................................................................. 4

4 OBJECTIVES..................................................................................................... 6
4.1 DYNAMIC ENVIRONMENT ........................................................................... 6
4.2 REALISTIC ENVIRONMENT.......................................................................... 6
4.3 COST EFFECTIVE ................................................................................. 6

5 CELLS AND PORTALS..................................................................................... 7

6 SYSTEM DESIGN AND IMPLEMENTATION..................................................... 8
6.1 ORGANISATION ......................................................................................... 8
6.2 SCENE GRAPH.......................................................................................... 9
6.3 GEOMETRY............................................................................................. 12

6.3.1 Triangles ................................................................................. 12
6.3.2 Surfaces .................................................................................. 13

6.4 FILE FORMAT.......................................................................................... 14
6.5 RENDER PROCESS.................................................................................. 15
6.6 RENDER DEVICE ..................................................................................... 16
6.7 VIEWER.................................................................................................. 17

7 RESULTS ........................................................................................................ 17

8 CONCLUSION ................................................................................................. 20

9 FUTURE WORK .............................................................................................. 21
9.1 PHYSICS AND COLLISION DETECTION ....................................................... 21
9.2 INTERACTIVE MODELLING ........................................................................ 21

10 REFERENCES................................................................................................. 21

11 APPENDICES.................................................................................................. 23
11.1 APPENDIX A: TABLE OF FIGURES ............................................................. 23
11.2 APPENDIX B: SOURCE CODE AND DOCUMENTATION ................................. 23
11.3 APPENDIX C: PROGRAM KEYBOARD CONTROL ......................................... 23
11.4 APPENDIX D: PROGRAM INITIALISATION FILE ............................................ 23



Computing Project Bernhard Tschirren

Page 3 of 24

1 ABSTRACT
Clients are expected to visualise large complex architectural models given only a
two-dimensional floor plan. A better approach would be to provide a three-
dimensional view of the building, as seen from a hypothetical human observer. The
client should be able to interactively control this observer, so that it is possible for
them to explore the architecture before it is built.

The architectural model must be completely dynamic. That is, the designer must be
able to make changes to the model without having to perform an expensive pre-
processing phase. The only acceptable exception is pre-calculated lighting. Radiosity
and raytracing schemes are far too slow to be performed in realtime. As a
compromise, the system should support both dynamic lights, and more realistic pre-
computed light maps.

The architectural walkthrough system described in this paper does not require any
specialty hardware. It simply requires a desktop PC equipped with a recent graphics
accelerator. To achieve interactive frame rates, the system uses a model that is
partitioned into cells and portals. These cells and portals are stored in a cyclic scene
graph. A depth-first-search starting at the viewer’s cell calculates the visible cells.
Hidden cells are quickly culled by checking portals for visibility. If a portal is not
visible, the cell behind it is also not visible. In this manner, a large amount of
geometry can be culled away.

The results show that this cell and portal approach is very effective. In wire-frame
mode, it is very clear that hidden triangles are quickly culled away. Because the
system is very scalable, this statement will hold true for architectural models
composed of millions of triangles.

2 INTRODUCTION
A two-dimensional floor plan is both used to design and visualise an architectural
model. When talking to a client, the architect must assume that they can visual what
the building will look like when it’s built. However, a typical client who has
commissioned a building may have no experience with visualising a building given
just a blueprint, and maybe a cardboard model.

A better approach would be to provide a three-dimensional view of the building, as
seen from a hypothetical human observer. The client should be able to interactively
control this observer, so that it is possible for them to explore the architecture before
it is built. It should then be possible to make changes to the model to see how they
affect the final building.

Architectural models are well suited to realtime exploration because they are densely
occluded. That is, at any one time, only a small percentage of the entire model is
visible to the observer. Most of the geometry is blocked by floors, ceilings and walls.
Algorithms can exploit this feature of architecture to provide interactive visualisation
of even large and complex models.



Computing Project Bernhard Tschirren

Page 4 of 24

This project proposes several goals and objectives to describe such a walkthrough
system. Algorithmic solutions are then presented that achieve these ambitious goals.
This paper describes an implementation of a system that allows the user to view
massive architectural models in real-time. The system uses the densely occluded
nature of architectural models to cull large areas that are not visible to the observer.
It supports both dynamic and pre-computed lights to provide a very realistic
environment. Finally, the system does not require any specialised hardware to
operate. It simply requires a cheap consumer graphics accelerator.

3 BACKGROUND
Realtime walkthroughs of architectural models were first investigated at UNC by
(Brooks, 1986). Brooks started the (Walkthrough Project), which has since become
the primary research body studying realtime architectural walkthroughs. Brooks’
system used a BSP-tree (Fuchs, 1980) to provide visibility culling, and achieve near
realtime performance. Unfortunately, this BSP-tree approach had two major
limitations. Generating even a sub-optimal BSP-tree was a very time consuming
operation, and once the BSP-tree was created the model could not be modified.

An alternative to BSP-tree culling was presented by (Airey, 1990). Potentially visible
sets (PVS) of the model were pre-computed for different viewpoints. Rendering the
scene was as simple as selecting the correct viewpoint, and sending the associated
PVS to the graphics pipeline. This approach suffered from the same problems as the
BSP-tree method used by (Brooks, 1986), namely long pre-processing phases and a
static model. However, it was a major step in the right direction.

(Teller, 1991) subdivided the model into rectangular cells. Cell-to-cell visibility was
pre-computed by linking cells that had an unobstructed sightline between them. This
created an adjacency graph that identified which cells were directly visible by each
cell. At each frame, the cell containing the camera was identified and the potentially
visible cells were loaded from secondary storage. Tests revealed substantially
reduced rendering loads. However, this approach assumed that all opaque walls and
portals were axis-aligned (to accommodate the rectangular cells). This approach also
suffered from excessive pre-computation.

Run-time evaluation of PVS was introduced by (Luebke, 1995). His system was
heavily based on work by (Jones, 1971) who initially pioneered the concepts of cells
and portals as a means of solving the ‘Hidden Line’ problem. Jones’ approach was to
subdivide the entire scene into convex polyhedral cells that were connected by
convex 2D regions called portals. Cells were just logical groupings of geometry, and
portals were just special kinds of polygons. Walls and portals were rendered starting
at the cell that contained the viewer. As each portal was encountered, the cell behind
that portal was recursively drawn (clipped into the portal). Because each cell was
convex, rendering exhibited zero overdraw.

Luebke simply applied the system proposed by Jones in an architectural context.
Cells corresponded to rooms bounded by walls and partitions. Portals corresponded
to doors and windows through which neighbouring rooms could be seen (see Figure
1). In addition, the limitation that each cell had to be convex was removed. Hardware
rendering devices could eliminate the problem of overdraw using a Z-buffer much
more efficiently than the clipping approach proposed by Jones.



Computing Project Bernhard Tschirren

Page 5 of 24

LIVING GAMES

FRONT
YARD

The living room and the games
room each correspond to a cell.
These two cells are connected by
a single two-way portal.

If the viewer was standing in the
living room looking at the solid
wall on the left, the portal would
not be visible, and hence, the
geometry behind the portal (the
games room) would not be
visible. However, if the viewer
was facing to the right, the portal
would be visible, and rendering
would recurse into the games
room.

The front yard also constitutes a
cell that is visible through the
windows of both the living room
and games room. Note that the
living room contains two portals to
the front yard, and the games
room contains three portals to the
front yard.

Figure 1: Excerpt of a house plan divided into cells and portals

To determine whether a portal was visible, the system described by (Luebke, 1995)
maintained a rectangular ‘current viewport’. Initially, the current viewport was set to
the entire screen. Portals were then projected into screen-space and their
rectangular bounding-box tested for intersection with the viewport. If the portal was
visible, the current viewport was set to the intersection of the viewport and the
projected portal’s bounding-box (thus limiting the view through both the viewport and
the portal, see Figure 2).

V

P

V = Viewport
P = Portal

Shaded = New Viewport

Figure 2: Intersection between Viewport and Portal



Computing Project Bernhard Tschirren

Page 6 of 24

4 OBJECTIVES

4.1 Dynamic Environment
The primary goal of this walkthrough system is to provide a truly dynamic
environment. Walkthrough systems exist to let architects, interior designers and
clients visualise a large model. In addition, questions like “what would happen if I
extended this room by one metre” must be quickly answerable. Therefore, the model
must be modifiable in real time.

The ideal architectural walkthrough system should allow the architect to design a
multi-level building and get an immediate 3D preview. It should then be possible to
walk through this model in realtime, as if walking through the real building. The
architect should be able to make changes to the model while observing the 3D
preview. It should be possible to interactively add, remove and modify rooms, doors,
windows and objects (tables, chairs, etc) in realtime.

The system must also support dynamic lights. Adding lights “that look right” to a
scene can take a huge amount of time. If the system provides instant feedback as
lighting parameters are changed, the architect can be much more productive.

To provide this dynamic environment, no visibility pre-processing can be performed.
This is a very ambitious goal, because all current walkthrough systems perform a
huge amount of pre-computation. For example, the system described by
(Funkhouser, 1996) spends five minutes dividing the scene into cells and portals.
Then, a further three hours and 31 minutes to compute cell-to-cell and cell-to-object
visibility lists. The time it takes to apply the radiosity lighting is not even mentioned!

This amount of pre-computation means that the architectural model is very static
once it is “compiled”. An animator can place a spline path through the model, and
render an animation that follows this path in less than three hours. What’s the point of
a walk-through, if it takes half a day to prepare the model!

4.2 Realistic Environment
The UCB system described by (Funkhouser, 1996) is restricted to axis aligned,
rectangular cells. Unfortunately, not many architectural models lend themselves to
these limitations. The system must be able to handle any kind of model thrown at it.

The Curtin University computer science building contains a window in the shape of a
triangle. Most current architectural systems can only handle rectangular portals.
Placing such a restriction on the shape of a portal is simply ridiculous. The system
must be able to handle portals in any shape.

Probably the biggest contributor to realism is lighting (and shadows). A scene without
shadows simply does not look right. Unfortunately, generating realistic lighting effects
can take a very long time. This clashes with the objective that the environment must
be dynamic. A solution is to provide support for both static and dynamic lights.
Therefore, the user can decide whether they wish to sacrifice a dynamic environment
to get higher levels of realism.

4.3 COST EFFECTIVE
Only a few years ago, graphics accelerators were not very common (and certainly
very expensive). Nowdays, even cheap desktop PC’s come with a graphics card that
supports 3D acceleration (via OpenGL and Direct3D).



Computing Project Bernhard Tschirren

Page 7 of 24

Currently available walkthrough systems (Walkthrough Project; Funkhouser, 1996)
were designed before the graphics accelerator was commonplace. They use
complex CPU intensive algorithms to try to minimise the number of triangles sent to
the graphics card. (Funkhouser, 1996) states that their Silicon Graphics Power series
320 workstation with Reality Engine graphics can render 50-100K Gouraud shaded,
texture-mapped polygons per second. A PC equipped with an nVidia Riva TNT2 can
draw 9 million Gouraud shaded, texture-mapped, Z-buffered triangles per second
(nVidia, 1999). The latest offering by nVidia, the geForce-256, can handle up to 15
million triangles per second. This card also supports hardware transformation,
clipping and lighting.

The architectural model used by (Funkhouser, 1996) (a fully furnished copy of their
seven floor computer science building Soda Hall) contains 1,418,807 polygons. If on
average a polygon can be split into 5-triangles, this comes to 7,094,035 triangles. On
the Riva TNT2 card, this can theoretically be rendered in under a second. In reality, it
will take a bit longer due to CPU and bus bandwidth limitations.

However, despite these impressive results, the walkthrough would still not be
interactive. Interactive rates require at least 15 frame updates per second. The
appearance of “smooth” movement requires at least 30fps. This target frame rate
limits the number of triangles that can be rendered to a theoretical maximum of
300,000 on a Riva TNT2.

These statistics are important, because they indicate that a graphics engine should
not worry about eliminating individual triangles. In the past, algorithms concentrated
on exact culling (for example the hidden line problem). Today, the problem is
reduced to eliminate invisible geometry as quickly as possible. Partially visible
objects need not be considered because the graphics card’s depth buffer will take
care of that.

5 CELLS AND PORTALS
A simple solution that meets all the stated objectives partitions the model into a
number of cells. As described in the Background section, a cell is simply a collection
of objects that should logically be bundled together. In an architectural environment,
a cell maps nicely onto a room. The room’s floor, ceiling, walls and furniture can all
be grouped together as a single cell. The other ingredient, the portal, links these cells
together. A portal corresponds to doors and windows. It is a convex polygonal region
through which the neighbouring cell can bee seen. The magic property of portal is
this: if the portal is not visible, the cell the behind the portal is also not visible. This
property allows large areas to be culled very quickly and efficiently.

The main advantage gained by using cells and portals, rather than a precalculated
PVS or BSP-tree, is a dynamic environment. The UC Berkley System described by
(Funkhouser, 1996) precomputes cell-to-cell and cell-to-object visibility. This
information requires over three hours to compute. This is unacceptable because it
does not allow the model to be later modified. Every time a single piece of furniture is
moved, the visibility information needs to be recomputed! In a cell and portal
environment, no pre-processing needs to be performed. Furniture can be moved
around inside a cell without any restrictions. Moving objects from one cell to another
is also possible, although a little more difficult (described later). Therefore, the portal
solution fully meets the objective to have a dynamic environment.



Computing Project Bernhard Tschirren

Page 8 of 24

A cell is just a collection of objects that are closely grouped together in space. The
walkthrough engine can utilise this information when performing collision detection.
Objects only need to be tested for collision against other objects in the same cell.
This significantly reduces the number of object to object collision tests that need to
be performed. However, this approach introduces some problems when an object
spans across multiple cells. This happens whenever an object is about to cross from
one cell to another via a portal. Because an object usually does not occupy a single
point in space, it can reside in both cells.

Another advantage of using cells and portals is that lighting can be constrained to
individual cells. When a dynamic light is added, for example an OpenGL point light, it
illuminates all subsequent geometry. This can be a problem, because a wall will
usually occlude the light for following geometry. A cell can effectively constrain the
light to closely grouped objects. In an architectural context, this means a light can be
constrained to individual rooms. Of course, this approach suffers from the problem
that light does not spill into neighbouring cells through portals. Therefore, a light in
one room will not illuminate an adjacent room even if the door is open. However,
testing shows that this is not really a problem, and image quality is only minimally
affected.

Cells also provide an advantage when pre-computing (or rather re-computing) static
lighting (usually supplied by a Radiosity algorithm). Whenever the geometry in a cell
is changed, the lighting computation can be restricted to that cell. This is not currently
implemented, however it seems a feasible topic for future research. Interactive
design can then be achieved in conjunction with realistic looking previews.

There is one major disadvantage to using a cell a portal system. No current
modelling tools can handle cells and portals. That means, generating a model is hard
work that involves quite a bit of manual labour. It also means that there are no file
formats that can store cell and portal information. All other walkthrough systems in
existence use either proprietary file formats, or heavily modified standard formats.
For example, the Walkthough Project at UNC uses the FLY format, which is actually
a complex scripting language. The UC Berkeley system uses the proprietary
UNIGRAFIX file format (Funkhouser, 1996).

There are no tools available that automatically partition an arbitrary architectural
model into cells and portals. This is unfortunate, because it means that the architect
should design the model with cells and portals in mind. Luckily, it is not a difficult task
to break up an existing model into a set of cells and portals.

6 SYSTEM DESIGN AND IMPLEMENTATION

6.1 Organisation
The system is constructed as shown in Figure 3. The scene is described in a text file
that contains the data for the entire architectural model. This data is then loaded into
a cyclic scene graph. This scene graph stores all the objects as graph nodes. This
includes the cells, portal, tables, chairs, doors, cameras, etc.

The render process traverses the scene graph and sends all visible geometry to the
render device. Currently only a cell and portal render device is implemented.
However, any kind of rendering scheme could be substituted here.

The render device is responsible for displaying the results on the screen. This
component is also very modular. Currently, only an OpenGL render device is
implemented. However, a driver could be written to support other devices (such as
DirectX, an image file or a printer).



Computing Project Bernhard Tschirren

Page 9 of 24

Render
Process

Render
Device

Scene
Graph

Scene
File

Viewer

Figure 3: System Overview

6.2 Scene Graph
The entire architectural model is stored as a cyclic scene graph. Do not get this
confused with traditional scene graph systems such as SGI Performer and Java3D.
Those systems restrict the graph to be acyclic. That is, the graph cannot contain any
loops (see Figure 4).

VIEWER NODE

CAR NODE

TRANSFORMATION NODES

WHEEL NODES

Figure 4: A traditional scene graph

The cyclic scene graph used by this system is much less restrictive because it allows
loops in the structure. The presence of these loops is very important, otherwise a cell
and portal system could not be mapped onto it. It is also important to note that other
visibility schemes such as BSP-trees can also be mapped onto this scene graph
system (Sweeney, 1998).

Much like a traditional scene graph, nodes represent objects, actions,
transformations, etc. However, there is one major difference between this cyclic
graph and a traditional acyclic scene graph: each node will only be rendered once.
The cyclic scene graph can contain loops, and to avoid infinite recursions around
these loops, each node can only be visited once.

In Figure 4, the four wheels are represented by four transformation nodes that link to
a single node containing the wheel geometry. Therefore, the wheel will be rendered
four times, each time at a different position. However, this cannot be done with a
cyclic scene graph, because the node containing the wheel geometry will only be
rendered once. Therefore, the cyclic scene graph would have to contain four
separate wheel nodes. Unfortunately, there are many other side effects of cyclic
scene graphs, and they will be described as they come up.



Computing Project Bernhard Tschirren

Page 10 of 24

The project proposal (Tschirren, 1999) describes one method of mapping cells and
portals onto this type of scene graph. Each node in the graph represents a cell. Each
link (or arc) in the graph represents a portal that points to the next cell. Because each
link is directed, a two-way portal (such as a door or a window) will require two links,
one in each direction (see Figure 5). It is also possible for a link to loop from a cell
back to the same cell. This loop represents a portal through which the current cell
can be seen - a mirror.

LIVING GAMES

FRONT
YARD

FRONT
YARD

GAMESLIVING

The windows looking out to the
front yard are one-way. That is,
the living room and the games
room cannot be seen from the
front yard. This shows the
flexibility of the system.

Figure 5: Cells and portals expressed as a scene graph

While developing this cell and portal implementation, it quickly became evident that it
would not work. After some careful consideration, it became clear that a portal is not
really an arc. A portal is another object in the scene, and much like a cell or a piece
of furniture, it should be represented by a node. This has a very significant impact on
the engine design. It follows that arcs are no longer special (ie: they no longer
contain any data). Therefore, an arc reverts to its traditional function: to simply
represent a relationship between two nodes.

The new scene graph for the above floor plan is shown in Figure 6. It may look more
complex, however the data structures are much simpler because everything is now a
node.



Computing Project Bernhard Tschirren

Page 11 of 24

FRONT
YARD

GAMESLIVING

Portal Node

Cell Node

Figure 6: Portals are simply nodes in the scene graph

It is interesting to note that representing a portal as just another node in the scene
has never been attempted before. Previous cell and portal systems have always
treated a portal as something ‘special’. Most systems, such those used by the
Walkthrough Project, represent portals as ‘special’ polygons in the scene. However,
this approach is flawed by design because it couples portals together with geometry.
A portal should have nothing to do with the geometry.

By decoupling the portals from geometry, it is possible to store the geometry in any
representation. For example, the implemented walkthrough engine uses triangles to
store all geometry, while all portals are described by a convex polygonal outline. It is
very easy to modify either the portal or the geometry representation without them
affecting each other.

The project proposal also mentions special portals that link back to the same cell -
mirrors. However, mirrors are not possible because each node is rendered only once.
Therefore, a mirror would never reflect the scene because the scene has already
been drawn in front of the mirror. However, this behaviour makes sense, because
two mirrors could otherwise infinitely reflect each other. This is the second side effect
caused by using a cyclic scene graph.

There are several ways to represent a graph structure in memory. Initially, the scene
graph was modelled after the design specified by (Goldschmidt, 1998). This design
uses two classes to represent a graph: nodes and arcs. An arc simply connects two
nodes. This structure was ideal because it allowed portals to be mapped onto arcs.
However, once the idea of mapping portals onto arcs was dropped, this structure
became too clumsy and complex.

A better approach was inspired by the C++ Run Time Type Information (RTTI) library
(Telea, 1997). Because this library fully supports multiple inheritance, it maintains a
graph of all classes. This graph is stored using a form of adjacency lists (Aho &
Ullman, 1992). Each class contains a list of parent classes (base classes) and a list
of child classes (sub classes). This idea was adapted to the scene graph structure,
such that each node of an incoming arc is a parent node, and each node of an
outgoing arc is a child node. This completely removes the concept of an arc, and
thus makes the scene graph structure very simple.

The scene graph must preserve the order of rendering. More specifically, it must
maintain the order of all child nodes. The reason for this is certain nodes must always
be rendered before or after other nodes. For example, lighting nodes must be
traversed before geometry nodes, and nodes containing transparent geometry must
always be rendered last.



Computing Project Bernhard Tschirren

Page 12 of 24

The engine is heavily based on Object Oriented Design (OOD). Every node in the
scene graph is derived from the RenderNode class. This class provides translation,
rotation and scaling services to all sub-classes. New node classes can be added
without affecting any existing code. In that respect, the scene graph system is highly
modular and extendible. The current node class hierarchy is included in the program
documentation in Appendix B: Source Code and Documentation.

6.3 Geometry
The display database for the model used by the UC Berkeley walkthrough system
contains 14,478 objects, of which only 8,037 are unique. Their system supports
object instances, such that each instance contains a transformation matrix describing
the instance’s position, direction and scale, and a pointer to the geometry. If it did not
support this object instancing mechanism, the display database would have grown in
size from 21.5MB to 349.5MB (Funkhouser, 1996). Therefore, supporting instances
of objects is essential.

Unfortunately, as described earlier using the car wheel example, geometry sharing
does not come naturally to a cyclic scene graph. Therefore, the system must
explicitly maintain a global list of geometry, and each model node then has a pointer
into this list. The final implementation of the walkthrough engine fully supports this,
although the example scenes do not make use of it.

6.3.1 Triangles
The engine was initially designed to use polygons as the basic primitive to describe
all geometry. However, several issues (related to data-structure simplicity and
performance) caused the humble triangle to become the basic primitive.

Compared to polygons and bezier/nurb surfaces, triangles are very simple to store.
They require a list of vertices and a list of indices (where every group of three indices
describes a discrete triangle). All other surface descriptions can be converted into
triangles (to varying degrees of accuracy). Therefore, triangles can approximate any
surface.

However, the main reason for using triangles is that current consumer graphics
hardware can only render triangles. That is, all polygons are eventually converted to
triangles. This conversion usually happens in software by the graphics API.
Therefore, it is quicker to just store the triangles in the first place.

Current graphics hardware is bandwidth limited, rather than fill-rate limited. That is,
the hardware can render the primitives quicker than it can receive them via the
graphics bus. The solution to this problem is to organise the geometry into triangle
strips, where each subsequent triangle shares two of its vertices with the previous
triangle (see Figure 7). Storing (n) discrete triangles requires (3n) vertices, whereas
storing them as strips only requires (n+2) vertices. If each vertex contains XYZ
coordinates (3 floats), a normal (3 floats), texture-coordinates (2 floats) and an RGBA
colour (4 floats), the total size of each vertex is 12*sizeof(float) bytes. It is apparent
that significant bandwidth savings can be made by storing the data as triangle strips.



Computing Project Bernhard Tschirren

Page 13 of 24

1

2

3

4

5

Figure 7: A triangle strip

The best representation of arbitrary geometry would be a list of triangle strips
precompiled into a display list. Of course, this assumes that the geometry never
changes once it is compiled. This may not be true for a dynamic environment, and re-
compiling a list is very slow.

There is a simpler alternative available, which is actually quicker than display lists on
current hardware. This alternative uses Compiled Vertex Arrays (CVAs) and exploits
a well known “fast-path” through current OpenGL implementations. This mechanism
is highly optimised because it is used by the upcoming first-person shooter Quake3
(ID software, 1999). The basic idea is to specify all triangle vertices and indices, and
then explicitly tell the OpenGL driver that the given values will not change. This
allows the driver to perform its own strip finding, which is very simple if the given
discrete triangles are already in strip order. Therefore, the simple data-structure of
discrete triangles can be kept, while reaping the benefits of triangle strips. This is the
approach taken by the final implementation of the walkthrough engine. Display lists
are also present, but are currently not used.

6.3.2 Surfaces
To present higher levels of realism, the engine must support pre-calculated lighting.
This can be achieved by storing the shadow-map (also more popularly known as a
light-map) in a texture. Then, this shadow-map is “modulated” (multiplied) on top of
the texture (see Figure 8). Dark areas in the shadow-map will cause the final surface
to become dark, while light areas in the shadow-map retain the standard light
intensity (that’s why shadow-map is a better name than light-map). Most graphics
hardware can perform these two passes simultaneously using two texture units.

Material layer

Texture layer

Shadow-map layer

×

×

=
Combined surface

Figure 8: Multiple surface layers

To support this, the engine supports multiple surface layers. Each surface layer
contains a texture map and a set of texture-coordinates. The final implementation
fully supports this only if the graphics card has sufficient number of texture units. That
is, it does not perform multiple passes to render all the surfaces.



Computing Project Bernhard Tschirren

Page 14 of 24

6.4 File Format
As discussed earlier, there are no standard file formats for representing a scene
using a cyclic graph. The only viable option was to create a simple and portable file
structure similar to VRML. Initially, this was going to be a binary format because it’s
simpler to program. However, that made it very difficult to “hand-create” some initial
test data. Therefore, the format was changed to a text file. This also has the
advantage of being portable across multiple platforms.

The only difficulty pertained to storing the graph structure describing the scene. If the
file format mirrored the structure in memory, each node would have to list all its
neighbouring nodes. This does not fit well with the objective that the environment is
truly dynamic. It should be possible to add new nodes without modifying existing
nodes. Therefore, the file format needs to contain a command such as “connect
these two nodes together”.

The current implementation uses a simple but powerful representation. Each object
in memory has an equivalent object in the file. However, the file may contain some
additional “utility” objects that can perform some kind of action (for example,
connecting two nodes together). These objects follow the following simple format:

class-name [object-name]
  {
  object-body which is composed of
  } property = value pairs

More formally in EBNF:
file-format ::= object*
object      ::= class-name {object-name} ‘{’ object-body ‘}’
class-name  ::= identifier
object-name ::= identifier
object-body ::= (identifier ‘=’ value)*
identifier  ::= [a-zA-Z][a-zA-Z0-9]*
value       ::= integer | float  |
                boolean | string |
                object  | array
boolean     ::= “yes” | “on”  | “true”  |
                “no”  | “off” | “false”
array       ::= ‘[’ value* ‘]’

The parser simply scans through the file and uses RTTI to construct an object of a
class named ParseClassName (where ClassName is taken directly from the file).
This parser object is then executed to scan the object-body and construct the object
in memory. The object-body can theoretically contain anything, however it should
follow the convention of (property = value) as set out by the EBNF rules above.

The parser maintains a list of all named objects. That’s how the scene is
reconstructed in memory. All node objects become part of the scene graph, and all
geometry, material and texture objects get stored in a list (so they can be shared
among the nodes). Any other objects are simply ignored.

It was only after developing the specification that this file format’s true power was
realised. For example, a feature similar to “#include” was easily added by creating an
“Include” parser. Additionally, the ability to reference another object was added by
creating a “Reference” parser. The problem of connecting two nodes together was
solved by writing an “Attach” parser. All these utility “objects” are used by the
example scene files.



Computing Project Bernhard Tschirren

Page 15 of 24

The main hassle with this text file approach is loading speed. It can take a long time
to load a large scene. Time is mostly spent on constructing and destructing the
parser objects. This tends to thrash memory, as a lot allocation and de-allocation is
performed. Loading time would significantly reduce if this part of the parser were
optimised.

In addition, the format is very verbose causing the files to be quite large. However,
today’s desktop computers come with huge amounts of disk space, and this is not
really a problem. As a slight concession, the 3D-Studio Max ASE (Ascii Scene
Export) format generates files nearly twice in size.

6.5 Render Process
To render the architectural model, the system traverses through the scene graph
using a Depth First Search (DFS). This search starts at the cell node that contains
the viewer. The viewer can be any node in the scene graph, however, usually a
camera node is chosen.

When a portal node is encountered, the convex polygon that describes the portal
outline is transformed into viewer space. Then, this transformed polygon is clipped
against the current view frustum. If the polygon is completely clipped away, the portal
node is not traversed any further. Otherwise, a new view frustum is cast through the
clipped polygon (see Figure 9), and rendering recurses through the portal node.
Figure 10 shows that the view frustum narrows as it traverses through the scene.

V

A B

CD

Viewer = V
Portal = (A,B,C,D)

Top Plane = (A,B,V)
Left Plane = (D,A,V)

Bottom Plane = (C,D,V)
Right Plane = (B,C,V)

Figure 9: Casting a view frustum through a portal polygon



Computing Project Bernhard Tschirren

Page 16 of 24

Figure 10: The view frustum narrows as it traverses through portals

The system maintains a stack of view frustums. Initially this stack contains a frustum
calculated using the viewer’s vertical field of view, the horizontal aspect ratio and the
size of the window. Therefore, this initial view frustum bounds the entire visible area.
Every time a portal node is reached, the current view frustum is pushed onto the
stack, and the new frustum is calculated. When rendering behind the portal
completes, the frustum is restored from the stack.

The original intent was to use OpenGL clipping planes to describe the frustum’s
planes. This could have a very positive effect on rendering performance, especially
on next generation graphics cards that can perform the clipping in hardware.
However, this is another situation that is affected by the “a node cannot be rendered
more than once” problem. If all the geometry behind a portal is clipped, only the
geometry visible through that portal will be drawn. A second portal leading to the
same cell may expose more geometry. However, this geometry will not be drawn
because the cell containing that geometry has already been visited.

Dynamic lights are also saved on a stack. Whenever rendering traverses through a
portal node, all lights are saved on the stack. All lighting parameters are then cleared
before rendering recurses through the portal. When rendering resumes, the lights are
restored from the stack. This has the effect of localising all lights to a single cell.

6.6 Render Device
The render device is responsible for rasterising the geometry. Currently, this class is
a sub-class of a window (as specified by the window manager). As its name
suggests, this device should not be associated with a window. A render device
should be able to represent any device capable of producing a final image.

The decision to make the render device a window sub-class was made due to code
simplicity. However, the result of this is complex program flow. Whenever the window
needs to be redrawn, the window manager sends an event to the render device. The
render device then needs to call the render process, which in turn uses the render
device for most of its work. This complex interaction between these two classes
became clear only late in the development. Unfortunately, there was not enough time
to fix it.



Computing Project Bernhard Tschirren

Page 17 of 24

6.7 Viewer
The viewer can be any node that is ultimately attached to a cell node. It does not
need to be directly attached to a cell node. It only needs to be a descendant of a
node that is attached to a cell.

This has the useful property that any node in the scene (other than a cell) can be
used as a viewer. In other words, the scene can be viewed from the point of view of
any object. For example, the viewer can be set to a spotlight node, and the user can
instantly see what this light illuminates.

The difficulty comes when the viewer node starts moving around the scene.
Rendering starts at the cell that contains the viewer. Therefore, if the viewer moves
into another cell, rendering must start from that other cell. The movement of the
viewer from cell to cell must be tracked. In fact, the movement of any node must be
tracked.

Ideally, this should be implemented as some sort of physics or animation system.
That way, any node’s movement could be tracked as it animates around the scene.
Such a system can become very complex. Therefore, the current implementation
only performs tracking of the viewer at the application level. It simply checks whether
the viewer has “stepped” through a portal, and if so, attaches the viewer to the next
cell.

As mentioned earlier, there is the problem that a node may occupy more than one
cell. This problem can occur because an object is not simply a point in space - it
occupies a volume of space. The simple solution to this is to attach the node to more
than one cell. The scene graph can easily handle this, as long as the correct nodes
are attached and detached as the object moves around.

7 RESULTS
It has been proven by prior research that breaking up a model into cells and portals
can reduce rendering loads by factors of 20% to 50% (Luebke, 1995). However, this
is highly dependent on the model and viewing position. The results observed usually
exceed this culling factor. Backface culling removes approximately 50% of all
geometry before rendering even starts. Then, any geometry behind the viewer is
instantly culled, which usually removes a further 50% of all visible geometry. Based
on the field of view, even more geometry is culled by the view frustum. Because this
view frustum narrows as it traverses through the portals, a large amount of geometry
is quickly removed.

The example scene (ucb.sce) is based on the sixth floor of the UCB computer
science building. It is one floor of the model used by (Funkhouser, 1996). However,
the model was completely re-generated given only a rough estimation of the two-
dimensional floor plan. This model was chosen because it contains many rooms.

The model is composed of the six cells listed in Table 1. Ideally, the model should be
partitioned further. Each room should be a separate cell. This would provide
significant savings if the rooms were highly furnished.



Computing Project Bernhard Tschirren

Page 18 of 24

Triangles Vertices
Centre Hallway 2406 2334
Centre Room 5684 9246
Left Room 4160 6690
Right Room: 4168 6690
Top Hall: 840 838
Bottom Hall: 1188 1169
Total 18446 26967
Average 3074 4494

Table 1: The six cells

The entire furnished computer science building, as used by the UCB walkthrough
team, is composed of 1.4 million polygons. That roughly equates to 7 million
triangles. This model is therefore only 0.26% the size of their model. However, the
cell and portal algorithm is highly scalable, and quickly culls large areas.

You may notice that some of the walls are paper-thin. This was due to my mediocre
architectural skills, and a lack of time. The most important walls, however, do contain
some depth. In wireframe mode, you might also notice some geometry off to the side
of the model. It’s just a doorframe.

Figure 11: The shaded UCB scene Figure 12: The wire-frame UCB scene

Both the model and all the furniture were created using 3D Studio Max, and exported
as an ASE (Ascii Scene Export) file. A custom program then converted this data to
the scene format used by this architectural walkthrough system. All portals were then
manually added to the scene.

In wire-frame mode, the culling process is clearly visible. The centre room provides
the most striking example of this. The first image (Figure 13) shows the room when
the portal to the hallway is not visible. The second image (Figure 14) shows what
happens when the portal becomes visible. Both the room and the hall geometry are
now rendered.



Computing Project Bernhard Tschirren

Page 19 of 24

Figure 13: A lot of the geometry has been culled away

Figure 14: Once the doorway is visible, the hidden geometry becomes visible

It is also interesting to note that there is still some hidden geometry in this second
image. The third image taken from further to the right of the same room (Figure 15)
reveals that there is more furniture in another room down the hall. The reason that
this furniture was never visible earlier was due to the view frustum narrowing as it
was cast through the portal leading out into the hall. This proves that the cell and
portal system does an excellent job of culling out invisible geometry.

Figure 15: More hidden geometry is revealed



Computing Project Bernhard Tschirren

Page 20 of 24

The UCB scene also contains an example of pre-calculated lighting. The following
image (Figure 16) shows the shadow on the floor below the table and chairs. This
shadow was pre-rendered using 3D Studio Max, and is being applied here as a
second surface layer on top of the carpet. This shadow is only visible if the graphics
accelerator supports multi-texturing.

Figure 16: Notice the pre-calculated shadows in this scene

8 CONCLUSION
The architectural walkthrough system described in this paper allows a hypothetical
observer to interactively explore large architectural models. In addition, both the
geometry and lights can be interactively modified at run-time. This is achieved by
performing no visibility pre-processing. All visibility culling is performed at run-time
and in real-time.

The system supports a realistic environment by allowing the user pre-compute
expensive lights. Each surface is composed of multiple layers that contain textures
and shadow-maps. Radiosity and raytracing methods can be used to compute these
shadow-maps ahead of time. This significantly increases the realism of the
environment.

No specialised hardware is required to make this system work. However, a cheap
consumer graphics card that accelerates a graphics API such as OpenGL is a
necessity.

To make this interactive walkthrough possible, the scene is broken up into cells and
portals. A cyclic graph is used to maintain all the objects in the scene (cells, portals,
lights, furniture, etc). The system also allows instances of objects to be placed in the
scene, which significantly reduces the size of the model database.

The implementation proves that this cell and portal approach is very effective. In
wire-frame mode, it is very clear that large amounts of geometry are simply culled
away. Because the system is very scalable, this statement will hold true for
architectural models composed of millions of triangles.



Computing Project Bernhard Tschirren

Page 21 of 24

9 FUTURE WORK

9.1 Physics and Collision Detection
The most significant issue in the current implementation is the lack of collision
detection. The viewer can simply march through a wall. This can have adverse
effects on visibility culling. The system expects the viewer to be in one cell, when
they have actually jumped through a wall into a nearby cell.

This collision detection problem directly leads to the viewer tracking issue. The
system needs to track the viewer’s movement so it knows which cell the viewer
resides in. This is true for all nodes in the scene graph. The system needs to
constantly know in which cell each node is located.

To implement this, the system needs to contain some sort of animation and physics
process. This physics process needs to keep track of the movement of all nodes.
When a node leaves a cell via a portal, the node needs to be detached from the cell it
is leaving. When a node enters a cell via a portal, the node needs to be attached to
the cell it is entering. This movement needs to be updated independently of the
current frame rate. That way, an object’s velocity does not depend on the speed of
the machine.

9.2 Interactive Modelling
The current system fully supports a dynamic environment. However, it does not make
use of this feature. An interesting idea would be to allow the user to change the
model in the 3D view. The user could simply click the object that they wish to change,
and manipulate it in three dimensions. Materials and textures could be applied
interactively. Geometry could be changed by dragging vertices around. New rooms,
doors and windows could be interactively stuck together. Lighting parameters could
be changed while getting instant feedback.

Interactive modelling is a new area, and its potential has not yet been realised.
However, with graphics hardware becoming a consumer product, many 3D modelling
programs, such as 3D Studio Max, have already jumped on the realtime editing
bandwagon.

10 REFERENCES
Aho A. V. and Ullman J. D (1992)
Fondations of Computer Science.
W. H. Freeman and Company, New York, NY.

Airey J. M. and Rohlf J. H. and Brooks F. P. Jr. (1990)
Towards image realism with interactive update rates in complex virtual building environments.
Computer Graphics (Symposium on Interactive 3D graphics), vol 24, no 2, pp 41-50.

Brooks F. (1986)
Walkthrough: A dynamic graphics system for simulating virtual buildings.
ACM Symposium on Interactive 3D graphics, Chapel Hill, NC.

Fuchs H. and Kedem Z. M. and Naylor B. F. (1980)
On visible surface generation by a priori tree structures.
Computer Graphics (ACM SIGGRAPH ’80 Proceedings), vol 14, no 3, pp 124-133.

Funkhouser, T. and Teller S. and Sequin C. and Khorramabadi D. (1996)
The UC Berkeley System for Interactive Visualization of Large Architectural Models.
Presence, vol 5, no 1, pp 13-44.



Computing Project Bernhard Tschirren

Page 22 of 24

Goldschmidt, D. E. (1998)
Design and Implementation of a Generic Graph Container in Java.
Masters Thesis, available at http://www.cs.rpi.edu/projects/pb/jgb/.

ID Software. (1999)
Optimizing OpenGL drivers for Quake3.
Available at http://www.quake3arena.com/news/glopt.html.

Jones C. B. (1971)
A new approach to the ‘hidden line’ problem.
The Computer Journal, vol 14, no 3, pp 232.

Luebke D. and Georges C. (1995)
Portals and mirrors: simple, fast evaluation of potentially visible sets.
ACM Symposium on Interactive 3D Graphics, ACM, New York, NY, pp 105-106.

nVidia. (1999)
Riva TNT2: High-Performance 128-bit TwiN Texel 3D Processor.
Available at http://www.nvidia.com/Products.nsf/htmlmedia/riva_tnt2.html.

Sweeney T. (1998)
Unreal technology features.
Unreal Technology, available at http://unreal.epicgames.com/.

Telea, Alexandru (1997)
A General-Purpose Run-Time Type Information System for C++.
Available at http://www.win.tue.nl/math/an/alext/ALEX/C++/RTTI_DOC/rtti_doc.html.

Teller S. and Séquin C. H. (1991)
Visibility processing for interactive walkthroughs.
Computer Graphics (ACM SIGGRAPH ’91 Proceedings), vol 25, no 4, pp 61-69.

Tschirren, B. (1999)
Project Proposal: Realtime Walkthroughs of Massive Architectural Models.
Not published.

Walkthrough Project, The.
Available at http://www.cs.unc.edu/~walk/.



Computing Project Bernhard Tschirren

Page 23 of 24

11 APPENDICES

11.1 Appendix A: Table of Figures
FIGURE 1: EXCERPT OF A HOUSE PLAN DIVIDED INTO CELLS AND PORTALS ..................... 5
FIGURE 2: INTERSECTION BETWEEN VIEWPORT AND PORTAL......................................... 5
FIGURE 3: SYSTEM OVERVIEW .................................................................................... 9
FIGURE 4: A TRADITIONAL SCENE GRAPH...................................................................... 9
FIGURE 5: CELLS AND PORTALS EXPRESSED AS A SCENE GRAPH ................................. 10
FIGURE 6: PORTALS ARE SIMPLY NODES IN THE SCENE GRAPH..................................... 11
FIGURE 7: A TRIANGLE STRIP..................................................................................... 13
FIGURE 8: MULTIPLE SURFACE LAYERS ...................................................................... 13
FIGURE 9: CASTING A VIEW FRUSTUM THROUGH A PORTAL POLYGON ........................... 15
FIGURE 10: THE VIEW FRUSTUM NARROWS AS IT TRAVERSES THROUGH PORTALS......... 16
FIGURE 11: THE SHADED UCB SCENE........................................................................ 18
FIGURE 12: THE WIRE-FRAME UCB SCENE................................................................. 18
FIGURE 13: A LOT OF THE GEOMETRY HAS BEEN CULLED AWAY ................................... 19
FIGURE 14: ONCE THE DOORWAY IS VISIBLE, THE HIDDEN GEOMETRY BECOMES VISIBLE 19
FIGURE 15: MORE HIDDEN GEOMETRY IS REVEALED.................................................... 19
FIGURE 16: NOTICE THE PRE-CALCULATED SHADOWS IN THIS SCENE ........................... 20

11.2 Appendix B: Source Code and Documentation
A pre-compiled win32 executable, source code and HTML documentation is available
as ZIP archives from the following URL:

http://www.computing.edu.au/~tschirre/pub/project/

The HTML documentation is also available on-line at the following URL:

http://www.computing.edu.au/~tschirre/pub/project/doc/html/

11.3 Appendix C: Program Keyboard Control
The architectural walkthrough program has the following keyboard controls:

Left Arraw: Rotate Left
Right Arrow: Rotate Right
Up Arrow: Move Forwards
Down Arraow: Move backwards

11.4 Appendix D: Program Initialisation File
The program requres an initialisation file called “project.ini” to reside in the current
directory. This file contains the following optional settings:

Settings (Defaults Shown) Description

Application.width  = 800 .....................................
Application.height = 600

The size of the main application
window.

Viewer.node = "viewer" ...................................... The name of the viewer node. This
usually points to a camera.



Computing Project Bernhard Tschirren

Page 24 of 24

Viewer.velocity = 5.0 .......................................... The number of units the viewer
moves when the up and down
arrows are pressed.

Viewer.light = false ............................................. Attach an omnidirectional light to
the viewer. As the viewer walks
around, surrounding geometry is
illuminated.

Render.fovY = 60.0 ............................................ The vertical field of view.

Render.aspect = 1.0........................................... The horizontal aspect ratio.

Render.zNear = 1.0............................................ The near clipping plane.

Render.zFar   = 1000.0 ...................................... The far clipping plane.

OpenglRenderDevice.texturing = true ................ Enable texture mapping. If a
software implementation is used to
render the scenes, this setting
should be changed to false.

OpenglRenderDevice.multitexturing = true......... Enable multi-texturing if the
hardware supports it. This enables
multiple surface layers.

OpenglRenderDevice.mipmap = true ................. Enable mipmapping.

OpenglRenderDevice.minFilter = true ................ Perform linear filtering on the
texture.

OpenglRenderDevice.minFilterMipmap = true.... Perform linear filtering on the
mipmaped texture. You might have
to set this to false.

OpenglRenderDevice.magFilter = true ............... Enable bilinear filtering.


	ABSTRACT
	INTRODUCTION
	BACKGROUND
	OBJECTIVES
	Dynamic Environment
	Realistic Environment
	COST EFFECTIVE

	CELLS AND PORTALS
	SYSTEM DESIGN AND IMPLEMENTATION
	Organisation
	Scene Graph
	Geometry
	Triangles
	Surfaces

	File Format
	Render Process
	Render Device
	Viewer

	RESULTS
	CONCLUSION
	FUTURE WORK
	Physics and Collision Detection
	Interactive Modelling

	REFERENCES
	APPENDICES
	Appendix A: Table of Figures
	Appendix B: Source Code and Documentation
	Appendix C: Program Keyboard Control
	Appendix D: Program Initialisation File


